Основы статистического арбитража. Коинтеграция.
Atom Ответить
25.04.2012


Собственно, понятие коинтеграции лежало в основе статистического арбитража, который только начал появляться в конце 80-х и позволил первопроходцам из JP Morgan нарубить не мало денег, пока ... Но об этом в конце статьи. Поэтому в этот раз мы поговорим про коинтеграцию: что это такое, зачем и почему. Но начнем издалека и рассмотрим такие статистические понятия как порядок интеграции процесса и фиктивной (spurios) регрессии, которые и лежат в основе.

Рассмотрим для начала простейший процесс - гауссовский шум:



Теперь построим его кумулятивную сумму, то есть возьмем значения и последовательно их сложим. Таким образом получим, что Y_i = sum k = 0..i X_k, где X_k - это исходный гаусовский шум, Y_i - результирующий процесс. То есть в данном случае мы взяли шум и его проинтегрировали, получив случайное блуждание. Так же мы можем повторить данный процесс, но на этот раз, взяв в качестве исходных значений полученное нами на предыдущем шаге случайное блуждание. Результат представлен на рисунке (сверху - интеграл шума, случайное блуждание, снизу - повторная сумма, но на этот раз, взятая по случайному блужданию):



Проще говоря, мы проделали следующее: мы взяли числовой ряд шума и применили к нему операцию кумулятивной суммы (интегрирования). После первого применения мы, очевидно, получили случайное блуждание, а после последующего применения получили еще один числовой ряд. Чтобы опять вернуться к шуму, нам так же дважды необходимо применить операцию конечной разности к этому числовому ряду (или один раз к случайному блужданию). Тогда количество раз применения операции кумулятивной суммы мы можем назвать порядком интеграции процесса (числового ряда). То есть порядок интеграции процесса - это то, сколько раз мы применили сумму к шуму или, наоборот, сколько раз необходимо применить конечную разность к процессу, чтобы получить шум (гауссово распределенную случайную переменную). В общем случае, шум заменяется на требование получения стационарного процесса (то есть числового ряда у которого мат. ожидание и АКФ не изменяются во времени). Процесс с порядком интеграции k мы будем обозначать как I(k).

К примеру, график цены можно отнести к I(1) процессу (случайному блужданию). Если мы возьмем приращение, то есть разницу Close-Open свечек, то получим процесс с порядком интеграции I(0). Если рассмотрим какие-то экономические индикаторы, к примеру, ВВП или объем различных агрегатов денежной массы, то получим процессы, близкие к I(2).

Широко известны случаи, когда между абсолютно не связанными числовыми рядами находилась корреляция: к примеру, между уровнем цен и уровнем осадков в Великобритании, или поголовьем овец и GDP. Все это - примеры фиктивной регрессии (spurious regression). Рассмотрим для примера два независимых случайных блуждания:



Коэффициент корреляции между ними равен 0.35, хотя они и не взаимосвязаны. Вспомним, что корреляция связана с линейной регрессией, и рассмотрим взаимный график первого и второго процесса (по оси x - отложен первый процесс, по оси y - второй):



Фактически, расчет обычной корреляции сводится к следующему: мы считаем, какой процент времени два процесса находятся совместно по одну (или разную, если корреляция отрицательная) сторону от нуля. Но, как известно, для случайного блуждания вероятность нахождения по одну сторону от нуля подчиняется закону арксинуса, соответственно, когда мы пытаемся посчитать корреляцию между двумя случайными блужданиями, вероятность, что они чисто случайно ушли от нуля в одну сторону, значительно больше нуля. Таким образом, коэффициент корреляции начинает нам показывать невалидную взаимосвязь между двумя процессами, которой на самом деле нет.

Каким же образом нам посчитать взаимосвязь между двумя процессами? Для начала дадим простой ответ на этот вопрос. В общем случае, коэффициент корреляции валиден, если два числовых ряда, для которых он расчитывается, являются независимо распределенными случайными переменными (белым шумом, который мы рассматривали в начале статьи), или по крайней мере стационарными процессами. Таким образом, оба числовых ряда должны быть нулевого порядка интеграции (I(0) - белый шум/стационарный процесс). То есть чтобы, к примеру, посчитать взаимосвязь между двумя акциями(I(1) процессами), необходимо взять разность (Close - Open) и рассчитать корреляцию между ними. Если мы рассматриваем денежную массу/GDP или другие процессы, близкие к I(2), конечную разность необходимо брать два раза, чтобы привести их общему знаменателю I(0) процесса.

Минусы данного подхода заключаются в том, что для коротких числовых рядов расчет корреляции после взятия конечных разностей может не давать достаточной статистической значимости, а так же в том, что сама выявляемая взаимосвязь между двумя процесса достаточно примитивна.

Более сложный ответ на вопрос "Как посчитать взаимосвязь между двумя процессами?", привел Клайв Грэнджер и сотоварищи, который к Нобелевской премии революционизировал статистический анализ/эконометрику, и название этому - коинтеграция.

Рассмотрим все те же два случайных блуждания Y1 и Y2 (I(1) процесса). Теперь подумаем над тем, как будет вести себя разность между ними S = Y1 - b*Y2 (где b - некий коэффициент; для простоты возьмем 1). Если процессы не взаимосвязаны, то эта разность S так же должна быть случайным блужданием, то есть I(1) процессом. Если же взаимосвязь есть, то S должна быть "чем-то меньшим" в статистическом смысле, чем случайное блуждание. К примеру, если мы представим два числовых ряда, которые недалеко отходят друг от друга, то разница между ними будет белым шумом. В этом и заключается смысл коинтеграции: если для какого-то коэффициента b спред S = Y1 - b*Y2 будет иметь меньший порядок интеграции, чем исходные процессы, то такие процессы коинтегрированы. В рассмотренном выше случае это будет обозначать, что для двух I(1) процессов, порядок интеграции спреда S должен быть I(0) (то есть белым шумом/стационарным) для какого-то значения коэффициента b.

Рассмотрим также для примера разность двух случайных блужданий, для которых мы ранее насчитали корреляцию, равную 0.35. Получим такое же случайное блуждание:



Теперь рассмотрим два случайных блуждания, но на этот раз взаимосвязанные, и разницу между ними, которая в данном случае, очевидно, является стационарным I(0) процессом (сверху - первое случайное блуждание, посередине - второе, снизу - разница/спред между ними):



То есть логика коинтеграции сводится к тому, что необходимо найти какой-то коэффициент b и построить спред S = Y1 - b*Y2 такой, что порядок интеграции спреда меньше, чем у исходных процессов. Если мы рассматриваем два I(1) процесса, то спред должен быть стационарен.

Также в качестве примера коинтеграции часто приводят такой жизненный пример: представим пьяницу (случайное блуждание) и собаку, которую он ведет по улице на поводке. Теперь представим их позицию как два числовых ряда. Получаем следующее: один процесс движется случайно (пьяница), а другой (собака), хотя и может убегать от него в ту или иную сторону, не может убегать от него далеко и всегда возвращается. Соответственно, если мы построим разницу между ними, она будет иметь меньший порядок интеграции, чем два совершенно несвязанных случайных блуждания (пьяницы, блуждающие независимо по городу).

Хорошо. Предположим, мы знаем, что два процесса коинтегрированы. Но что нам это дает, какую математическую модель можно использовать, чтобы отразить их динамику? Существует теорема о репрезентации коинтеграции, которая говорит нам, что для двух коинтегрированных числовых рядов существует ECM-модель (error correction model), а так же наоборот - если для двух рядов существует ECM-модель, то они коинтегрированы. Проще говоря, коинтеграция <-> ECM-модель, то есть существование коинтеграции влечет наличие ECM-модели, и наоборот. В простейшем случае, она описывает следующие соотношения: предположим, что мы построили спред S между двумя рядами. Тогда каждый процесс будет стараться вернуть спред к нулю, то есть приращения процессов должны быть скоррелированы с положением спреда. Таким образом, мы приходим к модели: для двух рядов Y1 и Y2 мы строим спред S = Y1 - b*Y2 и разности каждого из них - dY1, dY2. Чтобы спрэд не "уходил далеко", разности процессов должны быть с ним скоррелированы. Необходимо постоянно подстраиваться, как в примере с пьяницей и собакой - там действует по сути один процесс - "пьяница", а собака к нему привязана. В общем случае, мы рассматриваем двух пьяниц, но связанных резинкой. Когда спред расходится, начинают действовать силы, возвращающие его к равновесию. Таким образом, мы приходим к следующей модели корректирвки ошибок (ECM-модели):
dY1 = -a1*S + lagged(dY1, dY2)
dY2 = -a2*S + lagged(dY1, dY2)
То есть наличие коинтеграции одназначно обозначает скоррелированность приращений процессов и спреда. Если спред расходится (например, становится положительным), то приращения одного процесса, обратно скоррелированного с ним, возвращают его к нулю, так же как и приращения другого. В этом заключается смысл ECM-модели и коинтеграции, поскольку наличие ECM-модели эквивалентно коинтеграции и наоборот. Коинтеграция показывает, что какая-то зависимость между числовыми рядами есть; ECМ-модель дает конкретное выражение этой зависимости в виде их динамики.

В общем случае, коинтеграционной зависимостью могут быть связаны более двух переменных, при чем таких зависемостей между ними может быть несколько, что приводит нас к VECM-модели (vector error correction model) - тягловой лошадке современной эконометрики.

Единственный вопрос, который мы пока не затронули, это - каким образом строить спрэд (то есть числовой ряд S)? Если нам дан набор числовых рядов Y1..Yn, между которыми присутствует единственная коинтеграционая зависимость, то для оценки параметров b1-bn спреда вида S = Y1 - b1*Y1 - b2*Y2.. - bn*Yn достаточно построить линейную регрессию между Y1 ~ Y2..Yn, коэффициенты которой (как доказывается в мат. статистике) дадут консистентную оценку параметров b1..bn. Если процессов всего лишь два, необходимо той же простейшей линейной регрессией Y1 ~ b*Y2 определить значение коэффициента.

Почему коинтеграция так важна? Потому что подавляющее большинство макроэкономических переменных/индикаторов нестационарны и, следовательно, трудно поддаются анализу классическими статистическими методами, но в тоже время имеют очевидную схожесть между собой (не разбегаются далеко, как в примере с пьяницей и собакой) и поэтому могут быть валидно описаны при помощи коинтеграции и соответствующих моделей (VECM и т.п.).

Но, применительно к рынку, наличие настоящей коинтеграции означает наличие абитража, что противоречит базовому постулату эффективных рынков - no arbitrage. Настоящий спред для коинтегрированных процессов всегда (!) сходится, так как является стационарным I(0) процессом. Также для двух коинтегрированных процессов всегда должна существовать ECM-модель(то есть приращения активов должны быть обратно скоррелированны со спредом, возвращая его к нулю). Для рыночных спредов не наблюдается ни того ни другого, поэтому, хотя они и ограничены и могут проходить тесты на коинтеграцию, у них есть главное отличие - рыночные спреды не стационарны.




31 Ответов
1 2  >
dvoris

Фотография
Дата: 25.04.2012
Ответить


Спасибо :)
Спасибо:

OvcharenkoVI

Фотография
Автор статей
Дата: 25.04.2012
Ответить


Толку мало вынес, но классно )
Спасибо:

transdex

Фотография
Дата: 25.04.2012
Ответить


OvcharenkoVI Перейти
Толку мало вынес, но классно )

Толку видимо действительно мало , иначе коинтеграция между доходом трейдера и уровнем его математического образования была бы более выражена. Сам искренне огорчен этим обстоятельством... Confused
Спасибо:

Evgeny_K

Фотография
Дата: 26.04.2012
Ответить


Классная статья! Побольше бы таких. Спасибо автору!
Спасибо:

удален пользователем

Фотография
Дата: 29.04.2012
Ответить


vlad1024 Перейти
Единственный вопрос, который мы пока не затронули, это то каким образом, строить спрэд (то есть числовой ряд S). Если нам дан набор числовых рядов Y1..Yn между которыми присутствует единственная коинтеграционая зависимость, то для оценки параметров b1-bn спреда вида S = Y1 - b1*Y1 - b2*Y2.. - bn*Yn, достаточно построить линейную регрессию между Y1 ~ Y2..Yn, коэффициенты которой(как доказывается в мат. статистике) дадут консистентную оценку параметров b1..bn.

Распространенное заблуждение. Выполните линейную регрессию, например, Y1 ~ Y2..Y(n) и Yn ~ Y1..Y(n-1) и увидите, что полученные вектора коэффициентов не пропорциональны. Тут это демонстрировалось на примере.
Спасибо:

vlad1024

Фотография
Автор статей
Дата: 29.04.2012
Ответить


hrenfx Перейти
vlad1024 Перейти
Единственный вопрос, который мы пока не затронули, это то каким образом, строить спрэд (то есть числовой ряд S). Если нам дан набор числовых рядов Y1..Yn между которыми присутствует единственная коинтеграционая зависимость, то для оценки параметров b1-bn спреда вида S = Y1 - b1*Y1 - b2*Y2.. - bn*Yn, достаточно построить линейную регрессию между Y1 ~ Y2..Yn, коэффициенты которой(как доказывается в мат. статистике) дадут консистентную оценку параметров b1..bn.

Распространенное заблуждение. Выполните линейную регрессию, например, Y1 ~ Y2..Y(n) и Yn ~ Y1..Y(n-1) и увидите, что полученные вектора коэффициентов не пропорциональны. Тут это демонстрировалось на примере.


это не заблуждение, а математически доказанный факт, для коинтегрированных процессов, линейная регрессия - дает супер консистентную оценку коэффициентов. Единичная коинтеграция, оцененная при помощи линейной регрессии, фактически означает взаимосвязь между рядом Y1 и другим рядом, который получен как линейная комбинация регрессоров. Соответственно, пробуя разные перестановки, мы будем получать разные зависимости, при этом некоторые из них могут не быть коинтегрированными (!). То есть Y1 ~ Z (где Z = b2*Y2 + b3*Y3.. + bn*Yn ), мы фактически тестируем коинтеграцию между двумя рядами Y1 и Z, если заменим Y1 на Y2, то соответственно и коинтеграционную зависимость мы будем искать между двумя различными рядами Y2 и Z (где Z = c1*Y1 + c3*Y3 + .. + cn*Yn). То есть в общем случаи для n рядов можно проделать n тестов на коинтеграцию. При этом некоторые из них могут давать как положительный так и отрицательный результат. Так же очевидно, что коэффициенты этих регрессий не будут коллинеарны (то есть пропорциональны, чего я собственно никогда и не утверждал).
Автор топика
Спасибо:

удален пользователем

Фотография
Дата: 29.04.2012
Ответить


Вы названием топика вводите людей в заблуждение. Причем тут академического уровня коинтеграция и практического уровня стат. арбитраж?! Наверное, вы верите в бога по имени Эконометрика. Так называемый модный квант. Жестко говорю, но давайте без обид.

Насколько понимаю, народ интересует одно - как из рынка выжать денег. А не теоретические изыски, которые к профиту имеют минимальное отношение.

Для стат. арбитража не нужна коинтеграция. Все, что нужно, чтобы найденные взаимосвязм между выборками нескольких ценовых временных рядов не мгновенно нивелировались. Т.е. чтобы издержки на перебалансировку портфеля были меньше, чем на его торговлю.

Очевидно, что абзац выше практически никто не понимает. Но в нем ничего заумного, просто в свое время разжевывать задолбался. Кто захочет вникнуть, может почитать мою писанину на разных форумах.

Кванты никаких исследований не проводят, а занимаются околонаучной ересью.

Хотите коинтеграции? Пожалуйста: EURUSD, GBPUSD и EURGBP. У них идеальная коинтеграция. Попробуйте их поторговать в профит - ничего не выйдет.
Спасибо:

vlad1024

Фотография
Автор статей
Дата: 29.04.2012
Ответить


hrenfx Перейти
Вы названием топика вводите людей в заблуждение. Причем тут академического уровня коинтеграция и практического уровня стат. арбитраж?! Наверное, вы верите в бога по имени Эконометрика. Так называемый модный квант. Жестко говорю, но давайте без обид.

Насколько понимаю, народ интересует одно - как из рынка выжать денег. А не теоретические изыски, которые к профиту имеют минимальное отношение.

Для стат. арбитража не нужна коинтеграция. Все, что нужно, чтобы найденные взаимосвязм между выборками нескольких ценовых временных рядов не мгновенно нивелировались. Т.е. чтобы издержки на перебалансировку портфеля были меньше, чем на его торговлю.

Очевидно, что абзац выше практически никто не понимает. Но в нем ничего заумного, просто в свое время разжевывать задолбался. Кто захочет вникнуть, может почитать мою писанину на разных форумах.

Кванты никаких исследований не проводят, а занимаются околонаучной ересью.

Хотите коинтеграции? Пожалуйста: EURUSD, GBPUSD и EURGBP. У них идеальная коинтеграция. Попробуйте их поторговать в профит - ничего не выйдет.


Никто никого в заблуждения не вводит, коинтеграция и есть основа статистического арбитража и выстроенных вокруг этого идей. То что вы не можете на этом заработать как бы очевидно, потому что из настоящих коинтегрированных спредов можно "грести деньги лопатой", что собственно и происходило на этапе зарождения статистического арбитража как направления. По поводу остального, вы уверены что статью до конца прочитали? Специально для вас процитирую:

"Но применительно к рынку, наличие настоящей коинтеграции означает - наличие абитража, что противоречит базовому постулату эффективных рынков - no arbitrage. Настоящий спред для коинтегрированных процессов, всегда (!) сходитя, так как является стационарным I(0) процессом. Так же для двух коинтегрированных процессов, всегда должна существовать ECM модель(то есть приращения активов должны быть обратно скоррелированны со спредом, возвращая его к нулю). Для рыночных спредов не наблюдается ни того ни другого, поэтому хотя они и ограничены, и могут проходить тесты на коинтеграцию, у них есть главное отличие - рыночные спреды не стационарны."
Автор топика
Спасибо:

удален пользователем

Фотография
Дата: 29.04.2012
Ответить


Еще раз повторяю, причем тут стат. арбитраж и коинтеграция? Вы пишите про коинтеграцию целую статью, чтобы в конце сказать "парни, алготрейдерам это нахрен не нужно". Для чего эта вся красивая эконометрическая теория, не могущая, как и другие эконометрические теории, быть применена на практике.

Торгую стат. арбитраж на самом "эффективном" рынке с минимальным количеством фин. инструментов - FOREX. Больше о себе - ни слова.

Эконометристы (а-ля кванты) снова и снова вводят народ в заблуждения (а попросту обманывают, свято веря в своего бога) своими распределениями, GARCH и подобными моделями, Херстами, настационарностями, мартингалами, коинтеграциями и прочей ересью. Во всем этом дерьме разобраться крайне сложно обывателю, у него закладывается комплекс, что что-то там для особоодаренных. А этих особоодаренных на пушечный выстрел не подпускают к себе грамотные алго-хэдж фонды.

Резюме: коинтеграция никакого отношения к стат. арбитражу не имеет. Попробуйте формализовать стат. арбитраж - что вы хотите получить? Исследуйте.

P.S. Кстати, эконометрический постулат эффективности рынка (no arbitrage) - хрень. Это очевидно почти любому успешному алготрейдеру.
Спасибо:

vlad1024

Фотография
Автор статей
Дата: 30.04.2012
Ответить


hrenfx Перейти
Еще раз повторяю, причем тут стат. арбитраж и коинтеграция? Вы пишите про коинтеграцию целую статью, чтобы в конце сказать "парни, алготрейдерам это нахрен не нужно". Для чего эта вся красивая эконометрическая теория, не могущая, как и другие эконометрические теории, быть применена на практике.

Торгую стат. арбитраж на самом "эффективном" рынке с минимальным количеством фин. инструментов - FOREX. Больше о себе - ни слова.

Эконометристы (а-ля кванты) снова и снова вводят народ в заблуждения (а попросту обманывают, свято веря в своего бога) своими распределениями, GARCH и подобными моделями, Херстами, настационарностями, мартингалами, коинтеграциями и прочей ересью. Во всем этом дерьме разобраться крайне сложно обывателю, у него закладывается комплекс, что что-то там для особоодаренных. А этих особоодаренных на пушечный выстрел не подпускают к себе грамотные алго-хэдж фонды.

Резюме: коинтеграция никакого отношения к стат. арбитражу не имеет. Попробуйте формализовать стат. арбитраж - что вы хотите получить? Исследуйте.

P.S. Кстати, эконометрический постулат эффективности рынка (no arbitrage) - хрень. Это очевидно почти любому успешному алготрейдеру.


Если вам сложно разобраться, в статье написанной с миниумом математике и простым языком, то лучше вообще алгоритмическим трейдингом не заниматсья. Про коинтеграцию было написанно, потому что люди просили рассказать, это раз. Во-вторых, потому что это базовое понятие с которого по сути начинался статистический арбитраж. По поводу no arbitrage вы даже не поняли о чем речь шла.
Вообще считаю, что общение в таком ключе наездов и хамства, не конструктивным, поэтому дальше вам придется общаться самим с собой, удачи. На все фактические вопросы я вам ответил (еще в первом посте).
Автор топика
Спасибо:

удален пользователем

Фотография
Дата: 30.04.2012
Ответить


У меня нет никаких претензий к статье. В ней вы, действительно, максимально доступным языком рассказываете о коинтеграции. Только зачем сюда приплетать стат. арбитраж? Вы по какой-то причине все время упоминаете, что стат. арбитраж начался с коинтеграции в свое время. С чего вы это решили?

Если писать об стат. арбитраже, то формализуйте, что для него нужно. После формализации станет понятно, что коинтеграция для него не требуется вовсе. И это было понятно с самого зарождения стат. арбитража. Более того, наличие коинтеграции вовсе не позволяет торговать в профит стат. арбитраж.

Ответьте на простой вопрос, почему практически нигде нет формализации - математической постановки задачи стат. арбитража? Во всей литературе по стат. арбитражу все сводят к попыткам побороть рыночную нестационарность. Т.е. все время пытаются найти простейший грааль. Очевидно, что это тупиковый путь.

Лучше всего посмотреть, какие исследования проводят алготрейдеры, практикующие стат. арбитраж. Это и динамика изменения вектора коэффициентов портфеля при сдвиге окна выборки, либо его расширении. Это исследование характеристик поведения портфеля после перебалансировки. И много всего подобного, что практически нигде не освещается. Ну и, конечно, мало кто использует большие таймфрэймы. Чаще всего это работа на тиках и использование обеих цен, а не как почти во всех эконометрических работах - только одна цена (покупки или продажи).

P.S. По поводу тона - возможно, переборщил.
Спасибо:

Mikhail Sukhov

Фотография
Автор статей Программист Трейдер
Дата: 30.04.2012
Ответить


hrenfx Перейти
P.S. По поводу тона - возможно, переборщил.


Переборщили, без "возможно".

Влад молодец, написал статью как он сам видит. Вы привели ссылку на свои размышления, тоже полезно. Зачем пытаться устраивать батл ввиде у кого формула длиннее? Тем более, что Влад ясно дал понять, что не претендует на последнюю инстанцию.
Спасибо:

удален пользователем

Фотография
Дата: 30.04.2012
Ответить


Влад, приношу свои извинения за резкость.

Конструктинвая критика статьи по коинтеграции (не стат. арбитражу): вам коинтеграцию нужно получить для такого выражения Z0 = Y1 * b1 + Y2 * b2 + ... Yn * bn. Это вовсе не тоже самое, как написано в статье и уточнениях ниже, что Z это один из таких вариантов Z1 = Y1 - b2 * Y2 - .... - Yn * Yn. Это разные математические задачи.

Решение для Z0 не будет совпадать (вектора окажутся не коллинеарны) с наилучшим решением среди Zi. ЛР (линейная регрессия) на практике не подходит, к сожалению. Нужно решать другую оптимизационную задачу.

Если касаться стат. арбитража, то в статье по какой-то причине отсутствует важная тема перехода от коэффициентов к объемам Yi в портфеле для стат. арбитража. А это, действительно, основа стат. арбитража.
Спасибо: Mikhail Sukhov

transdex

Фотография
Дата: 30.04.2012
Ответить


hrenfx Перейти
Кстати, эконометрический постулат эффективности рынка (no arbitrage) - хрень. Это очевидно почти любому успешному алготрейдеру.

Кстати, это не постулат. Это гипотеза. Абстрактная гипотеза. Её смысл в нескольких словах - Бог есть и он лично устанавливает везде справедливые цены. No arbitrage. Или другими словами: No risk - No profit. На самом деле ситуация ближе к следующей - Бога нет (или ему это неинтересно), но есть Дойче Банк, Джи Пи Морган и остальные, которые путем проведения крупномасштабных арбитражных операций устанавливают "справедливые цены". Что характерно, для бесконечно малого трейдера ничего не меняется, по прежнему No arbitrage.
Для того, чтобы бесконечно малым трейдерам было не так обидно, придумали Statistical arbitrage, который в отличие от классического risk - free arbitrage, под словом Statistical стыдливо подразумевает "рискованный но мало"...
Учитывая всеядность крупных инвестбанков, их аппетит к риску и прогрессирующий алготрейдинг, позволяющий поднимать самые мелкие крошки, бесконечно малые трейдеры постепенно выдавливаются из области "мало" в область "сильно". Может поэтому и
vlad1024 Перейти
Для рыночных спредов не наблюдается ни того ни другого, поэтому хотя они и ограничены, и могут проходить тесты на коинтеграцию, у них есть главное отличие - рыночные спреды не стационарны.

???


BigGrin


Mikhail Sukhov Перейти
Зачем пытаться устраивать батл ввиде у кого формула длиннее?

Батл - Cursing - нужен! Иначе скука смертная Sleep



PS.На мой взгляд название топика неправильное. Статистический арбитраж - слишком широкое понятие, чтобы его сводить к коинтеграции. Учитывая отсылку к J.P.Morgan, правильнее было бы назвать как этот дисер:
Pairs Trading: A Cointegration Approach
http://ses.library.usyd....072/1/Thesis_Schmidt.pdf
Спасибо:

удален пользователем

Фотография
Дата: 30.04.2012
Ответить


transdex Перейти
Для того, чтобы бесконечно малым трейдерам было не так обидно, придумали Statistical arbitrage, который в отличие от классического risk - free arbitrage, под словом Statistical стыдливо подразумевает "рискованный но мало"...

Если торгуете risk - free arbitrage, то знаете, это тоже Statistical arbitrage. На бирже помимо вас есть и другие ушлые с короткими проводами. А на децентрализованном FOREX вообще весело: получить реджект (LastLook) или упереться в пинг далекого банка/площадки - совсем не нулевые вероятностные события. Т.е. опять же стат. арбитраж.

Ну и не забываем, что стат. арбитраж гораздо ликвиднее free arbitrage. Разница может достигать нескольких порядков. Крупные инвестбанки мечтают о длительных (от нескольких минут) рыночно-нейтральных портфелях.
Спасибо:

vlad1024

Фотография
Автор статей
Дата: 30.04.2012
Ответить


hrenfx Перейти
Влад, приношу свои извинения за резкость.

Конструктинвая критика статьи по коинтеграции (не стат. арбитражу): вам коинтеграцию нужно получить для такого выражения Z0 = Y1 * b1 + Y2 * b2 + ... Yn * bn. Это вовсе не тоже самое, как написано в статье и уточнениях ниже, что Z это один из таких вариантов Z1 = Y1 - b2 * Y2 - .... - Yn * Yn. Это разные математические задачи.

Решение для Z0 не будет совпадать (вектора окажутся не коллинеарны) с наилучшим решением среди Zi. ЛР (линейная регрессия) на практике не подходит, к сожалению. Нужно решать другую оптимизационную задачу.

Если касаться стат. арбитража, то в статье по какой-то причине отсутствует важная тема перехода от коэффициентов к объемам Yi в портфеле для стат. арбитража. А это, действительно, основа стат. арбитража.


Смысл в том что таких решений существует N, то есть для каждого ряда можно построить линейную регрессию, его и остальных членов. В статье к слову, все правильно написано "S = Y1 - b1*Y1 - b2*Y2.. - bn*Yn". В рамках разговора про коинтеграцию, лучшего решения вообще не существует, потому что для начала нужно определить метрику "лучшести" и лишь потом о чем то говорить. А переход к объемам достаточно простой, умножается на какой-то коэффициент, и округляются чтобы получить целочисленные коэффициенты. Если вам кажется что статья не достаточно практично подходит к этому вопросу, то вполне можете написать свое видение вопроса, и рассказать нам как же правильно выбирать коэффициенты и что же из себя представляет статистический арбитраж, думаю многим это будет интересно.
Автор топика
Спасибо:

vlad1024

Фотография
Автор статей
Дата: 30.04.2012
Ответить


transdex Перейти

PS.На мой взгляд название топика неправильное. Статистический арбитраж - слишком широкое понятие, чтобы его сводить к коинтеграции. Учитывая отсылку к J.P.Morgan, правильнее было бы назвать как этот дисер:
Pairs Trading: A Cointegration Approach
https://ses.library.usyd....072/1/Thesis_Schmidt.pdf


В название топика отражается основное направление (статистический арбитраж) и под-тема которая к нему относится (коинтеграция). Естественно что статистический арбитраж не сводится к коинтеграции. По поводу эффективных рынков и no arbitrage, как раз и имелось ввиду, что невозможен безрисковый высокодоходный арбитраж, а наличие коинтеграции и следовательно стационарных спредов этому напрямую противоречат. При этом очевидно было время когда спреды были более-менее стационарными и благодаря даже простейшим моделям статистического арбитража, одной из которых является коинтеграция, можно было хорошо зарабатывать.
Автор топика
Спасибо:

удален пользователем

Фотография
Дата: 30.04.2012
Ответить


Теоретических и практических результатов уже уйма, поэтому писать статью не в состоянии (время и объем). Однако, спасибо за предложение. Хотелось бы что-то новое самому подчеркнуть.

На тему стат. арбитража больше года назад пробовал писать на форумах, когда еще только начинал исследовать. В частности, формулировал условие "хорошести":

Минимизация СКО Z = b1 * Y1 + ... + bn * Yn, где |b1| + ... + |bn| = 1. Там же говорил и про смысл коэффициентов.

Еще до разговоров выложил наглядный и удобный инстументарий, который на любом участке истории показывает и портфель с объемами по каждому Yi и коэффициенты и характеристики корзины в динамике. Вообщем, если есть желание, пользуйтесь.

Это было лишь самое начало, но уже сейчас понятно, что даже выложенного начала по теме оказалось больше, чем всего остального до этого. К большому сожалению.
Спасибо:

Evgeny_K

Фотография
Дата: 23.05.2012
Ответить


Интересное дело: когда заходит речь арбитраже, почти всегда начинается разговор про коинтеграцию и тест синтетики на стационарность. Наверное, потому что за коинтеграцию получена Нобелевская премия, и поэтому этот подход неосознанно считается самым крутым. :) Однако, в книге Кауфмана (ссылка на нее была в чате алготрейдеров), посвященной арбитражу и парному трейдингу, коинтеграции и стационарности нет. Автор использует индикатор, который называет Stochastic Difference, чтобы оценить отклонение пары от равновесия. Кроме того, он рассчитывает объем для каждого плеча отдельно, исходя из его текущей волатильности, стараясь таким образом минимизировать риск.
Спасибо:

удален пользователем

Фотография
Дата: 03.06.2012
Ответить


Спасибо:

Mad_R

Фотография
Дата: 11.06.2012
Ответить




Вы интересный "интернет боец". Появляетесь везде где пишут что либо про стат арб и начинаете активную критику в духе "вы ничего не понимаете", при этом ни разу я не видел что бы вы что то стоящее предложили взамен кроме картинок про динамику коэф-ов. Так было на пауке, на русском трейдере, на форумах mql4/5 и теперь здесь. Длится это уже года 2.
Т.е. это огульная неаргументированная критика как правило. А за тон этой критики вы, замечу, уже забанены на нескольких форумах, включая "паук".
Также, из доступной мне информации, вы являетесь обладателем парочки паблик счетов с просадками под 80%, и обладателем демо счета с баснословными прибылями и оборотом 17 млрд долларов. С приглашением войти в ПАММ счет.
Это было вступительное слово для коллег по форуму. Просто я давно читаю все ваши публикации на mql4/5, пауке, fxopen и пр.
===

Ради интереса прочитал маленьку методичку которую вы рекомендовали к ознакомлению. Остался в недоумении, т.к. в ней со половины начинается объяснение коинтеграции , стационарности и "зачем оно надо". При этом, абзацы про коинтеграцию скопипастены слово в слово из книги Видьямурти про стат арб. КОТОРАЯ в свою очередь, начинается с объяснения моделей CAPM, AR, MA, ARMA, ARCH/GARCH , затем коинтеграции-стационарности и прочих азов против которых вы так активно выступаете против. Все остальные идеи про подсчет количества пересечений, поиск эффективного уровня спреда для торговли, mean drift итд итп взяты ровно из этой же книги. Там забыли только упомянуть учет вол-ти в выборе эфф-го уровня спреда. Ссылка на книгу кстати есть в сносках.
В связи с эти, я таки не понял- что именно вы хотели в очередной раз до нас донести и прошу это мне сирому разъяснить.
Спасибо:

OvcharenkoVI

Фотография
Автор статей
Дата: 11.06.2012
Ответить


Mad_R Перейти


Вы интересный "интернет боец". Появляетесь везде где пишут что либо про стат арб и начинаете активную критику в духе "вы ничего не понимаете", при этом ни разу я не видел что бы вы что то стоящее предложили взамен кроме картинок про динамику коэф-ов. Так было на пауке, на русском трейдере, на форумах mql4/5 и теперь здесь. Длится это уже года 2.
Т.е. это огульная неаргументированная критика как правило. А за тон этой критики вы, замечу, уже забанены на нескольких форумах, включая "паук".
Также, из доступной мне информации, вы являетесь обладателем парочки паблик счетов с просадками под 80%, и обладателем демо счета с баснословными прибылями и оборотом 17 млрд долларов. С приглашением войти в ПАММ счет.
Это было вступительное слово для коллег по форуму. Просто я давно читаю все ваши публикации на mql4/5, пауке, fxopen и пр.
===

Ради интереса прочитал маленьку методичку которую вы рекомендовали к ознакомлению. Остался в недоумении, т.к. в ней со половины начинается объяснение коинтеграции , стационарности и "зачем оно надо". При этом, абзацы про коинтеграцию скопипастены слово в слово из книги Видьямурти про стат арб. КОТОРАЯ в свою очередь, начинается с объяснения моделей AR, MA, ARMA, ARCH/GARCH , затем коинтеграции-стационарности и прочих азов. Все остальные идеи про подсчет количества пересечений, поиск эффективного уровня торговли итд итп взяты ровно из этой же книги.
В связи с эти, я таки не понял- что именно вы хотели в очередной раз до нас донести и прошу это мне сирому разъяснить.


А мне интересно методичку было почитать ) так как ничего не понимаю в этом )
Спасибо:

удален пользователем

Фотография
Дата: 17.06.2012
Ответить


Mad_R Перейти
Вы интересный "интернет боец". Появляетесь везде где пишут что либо про стат арб и начинаете активную критику в духе "вы ничего не понимаете", при этом ни разу я не видел что бы вы что то стоящее предложили взамен кроме картинок про динамику коэф-ов. Так было на пауке, на русском трейдере, на форумах mql4/5 и теперь здесь. Длится это уже года 2.
Т.е. это огульная неаргументированная критика как правило.

Прикольно.
Цитата:
Также, из доступной мне информации, вы являетесь обладателем парочки паблик счетов с просадками под 80%, и обладателем демо счета с баснословными прибылями и оборотом 17 млрд долларов. С приглашением войти в ПАММ счет.

Клевета.
Цитата:
Ради интереса прочитал маленьку методичку которую вы рекомендовали к ознакомлению. Остался в недоумении, т.к. в ней со половины начинается объяснение коинтеграции , стационарности и "зачем оно надо". При этом, абзацы про коинтеграцию скопипастены слово в слово из книги Видьямурти про стат арб. КОТОРАЯ в свою очередь, начинается с объяснения моделей CAPM, AR, MA, ARMA, ARCH/GARCH , затем коинтеграции-стационарности и прочих азов против которых вы так активно выступаете против. Все остальные идеи про подсчет количества пересечений, поиск эффективного уровня спреда для торговли, mean drift итд итп взяты ровно из этой же книги. Там забыли только упомянуть учет вол-ти в выборе эфф-го уровня спреда. Ссылка на книгу кстати есть в сносках.
В связи с эти, я таки не понял- что именно вы хотели в очередной раз до нас донести и прошу это мне сирому разъяснить.

Графики там с небольшими пояснениями как раз показывают основы стат. арбитража. По поводу упомянутых рыночных моделей и "применения" мат. определений - ересь.
Спасибо:

Mad_R

Фотография
Дата: 17.06.2012
Ответить


Mad_R Перейти


В связи с эти, я таки не понял- что именно вы хотели в очередной раз до нас донести и прошу это мне сирому разъяснить.


Таки вопрос остался без ответа. Все что до него было это не суть.
Ваше появление снова носит характер величественный и почти мистический, вы как бы своими словами намекаете, что вам открыты тайные знания. Ну предположим открыты, но какой практический толк от этой риторики? Если вы не собираетесь предметно говорить, то лучше уж и вовсе молчать.
Спасибо:

удален пользователем

Фотография
Дата: 17.06.2012
Ответить


Что хотел сказать по теме - сказал.
Спасибо:
1 2  >

Добавить файлы через драг-н-дроп, , или вставить из буфера обмена.

loading
clippy